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ABSTRACT

The relationships between the onset of tropical deep convection, column water vapor (CWV), and other

measures of conditional instability are analyzed with 2 yr of data from the DOE Atmospheric Radiation Mea-

surement (ARM) Mobile Facility in Manacapuru, Brazil, as part of the Green Ocean Amazon (GOAmazon)

campaign, and with 3.5 yr of CWV derived from global positioning system meteorology at a nearby site in

Manaus, Brazil. Important features seen previously in observations over tropical oceans—precipitation condi-

tionally averaged byCWVexhibiting a sharp pickup at highCWV, and the overall shape of theCWVdistribution

for both precipitating and nonprecipitating points—are also found for this tropical continental region. The re-

lationship between rainfall and CWV reflects the impact of lower-free-tropospheric moisture variability on

convection. Specifically, CWVover land, as over ocean, is a proxy for the effect of free-tropospheric moisture on

conditional instability as indicated by entraining plume calculations from GOAmazon data. Given sufficient

mixing in the lower troposphere, higher CWV generally results in greater plume buoyancies through a deep

convective layer. Although sensitivity of buoyancy to other controls in the Amazon is suggested, such as

boundary layer andmicrophysical processes, the CWVdependence is consistent with the observed precipitation

onset. Overall, leading aspects of the relationship between CWV and the transition to deep convection in the

Amazon have close parallels over tropical oceans. The relationship is robust to averaging on time and space

scales appropriate for convective physics but is strongly smoothed for averages greater than 3 h or 2.58.

1. Introduction

Despite the complex relationships, interactions, and

feedbacks that exist among the atmosphere, land, and

ocean, a robust relationship exists between precipitation

and column water vapor (CWV). Bretherton et al.

(2004) identified a smooth relationship of CWV and

precipitation in daily mean satellite observations. On

shorter time scales, conditionally averaged precipitation

rate increases sharply with increasing CWV (Peters and

Neelin 2006; Holloway and Neelin 2009; Neelin et al.

2009). This sharp pickup is associated with the onset of

conditional instability leading to deep convection. Fur-

thermore, statistics of the transition to deep convection

are analogous to properties of a continuous phase

transition at a critical value of CWV (Peters and Neelin

2006; Neelin et al. 2009) and can be understood in terms

of stochastic variations across the deep convective onset

threshold (Stechmann and Neelin 2011). Evaluating this

deep convective transition using radiosondes from the

DOE Atmospheric Radiation Measurement (ARM)

site at Nauru in the tropical western Pacific, Holloway

and Neelin (2009) demonstrated that CWV represents a
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proxy for the impact of free-tropospheric humidity on

the conditional instability of entraining plumes affecting

the transition from shallow to deep convection and, thus,

that the statistics quantifying this transition provide a

substantial constraint on subgrid-scale processes that

must be represented in climatemodels. It was previously

unclear, however, the extent to which this simplifying

CWV–precipitation relationship applies for convective

transition statistics over tropical land, as fundamental

differences exist in the convective environment over

land compared with ocean—including a stronger diurnal

cycle and greater variations in the boundary layer

(Nesbitt and Zipser 2003).

There is substantial evidence suggesting the impor-

tance of free-tropospheric humidity to the onset of deep

convection (Austin 1948; Malkus 1954; Yoneyama and

Fujitani 1995; Brown and Zhang 1997; Wei et al. 1998;

Raymond and Torres 1998; Sherwood and Wahrlich

1999; Parsons et al. 2000; Raymond 2000; Raymond and

Zeng 2000; Tompkins 2001a; Redelsperger et al. 2002;

Ridout 2002; Grabowski 2003; Bretherton et al. 2004;

Chaboureau et al. 2004; Derbyshire et al. 2004; Guichard

et al. 2004; Sobel et al. 2004; Sherwood et al. 2004; Kuang

and Bretherton 2006; Tian et al. 2006; Wu et al. 2009;

Waite andKhouider 2010; Zhang andKlein 2010; Kumar

et al. 2013), yet manymodels are currently too insensitive

to free-tropospheric humidity (Biasutti et al. 2006; Dai

2006; Oueslati and Bellon 2013). This insensitivity con-

tributes to systematic errors and biases in simulated

precipitation on a number of space and time scales: the

erroneous appearance of a double intertropical conver-

gence zone (Hirota and Takayabu 2013; Hirota et al.

2014), deficiencies in the simulation of the Madden–

Julian oscillation (Grabowski and Moncrieff 2004;

Hannah and Maloney 2011; Jiang et al. 2011; Del Genio

et al. 2012; Kim et al. 2012; Holloway et al. 2013; Kim

et al. 2014; Rowe and Houze 2015), and failure to rep-

resent the shallow-to-deep convective transition and di-

urnal cycle of deep convection (Randall et al. 1991; Yang

and Slingo 2001; Betts and Jakob 2002; Dai and

Trenberth 2004; Bechtold et al. 2004; Chaboureau et al.

2004; Guichard et al. 2004; Dai 2006; Del Genio and Wu

2010; Waite and Khouider 2010). The effect of free-

tropospheric humidity on the onset of deep convection

can be explained through mixing between a convective

plume and its surrounding environment, which greatly

affects the plume’s buoyancy. Mixing assumptions must,

therefore, be appropriately constrained in convective

parameterizations. This has been a long-standing chal-

lenge, yet several studies have demonstrated significant

model improvement with realistic representations of en-

trainment processes (Neale et al. 2008; Bechtold et al.

2008; Zhao et al. 2009; Neelin et al. 2010; Sahany et al.

2012). In this regard, the convective transition statistics

developed over tropical oceans have proven useful as

model diagnostics (Sahany et al. 2012, 2014) that help to

constrain entrainment representations, along with other

observational and modeling studies (Raymond and Blyth

1986; Brown and Zhang 1997; Jensen and Del Genio

2006; Kuang and Bretherton 2006; Li et al. 2008;

Bacmeister and Stephens 2011; Luo et al. 2010; Romps

and Kuang 2010). The transition to deep convection can

also be examined in the temporal domain (Holloway and

Neelin 2010; Adams et al. 2013) in which time scales,

lead–lag relations, and the distinction between temporal

onset and termination (Stechmann and Neelin 2014) can

be important.

There are several additional variables and processes

controlling the transition to deep convection that must

also be understood and accurately represented in models:

free-tropospheric moistening processes (Johnson et al.

1999; Benedict and Randall 2007; Kemball-Cook and

Weare 2001; Mapes et al. 2006; Hohenegger and Stevens

2013; Kumar et al. 2013; Masunaga 2013; Hagos et al.

2014), the influence of the diurnal cycle (Betts and Jakob

2002; Bechtold et al. 2004; Chaboureau et al. 2004; Del

Genio andWu2010;Zhang andKlein 2010;Bechtold et al.

2014), the larger-scale dynamics forcing vertical ascent

(Kumar et al. 2013; Hohenegger and Stevens 2013), con-

vective downdrafts and cold pool formation (Tompkins

2001b; Khairoutdinov and Randall 2006; Schlemmer and

Hohenegger 2014), cloud size (Boing et al. 2012), moist

static energy gradients (Neelin andHeld 1987; Lintner and

Neelin 2007, 2008; Raymond et al. 2009; Lintner and

Neelin 2010;Ma et al. 2011), vertical wind shear (Rotunno

et al. 1988; LeMone et al. 1998), and microphysical pro-

cesses, including cloud–aerosol interactions (Andreae

et al. 2004; Khain et al. 2005). Important differences likely

exist in theway these processes and variables contribute to

the conditional instability of the environment over tropical

land versus tropical oceans.

Thus far, an insufficient observational record in the

continental tropics has limited development of convective

transition statistics, yet the Green Ocean Amazon

(GOAmazon) campaign in Manacapuru, Brazil (2014/15;

Martin et al. 2016) has provided a unique opportunity to

evaluate the transition to deep convection over tropical

land, to elucidate potential complexities compared to the

ocean, and to develop simple, useful statistics as model

diagnostics. Here, we derive the CWV–precipitation re-

lationship and associated statistics with these data and

with a complementary 3.5-yr dataset from the central

Amazon using global positioning system (GPS) meteo-

rology that provides continuous, all-weather observations

of CWV at high temporal resolution over tropical land

(Adams et al. 2013, 2015). Parallels are drawnbetween the
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land and the ocean to assess whether free-tropospheric

humidity is also of leading-order importance to the con-

ditional instability of an entraining plume over land as it is

over ocean. The robustness of the convective transition

statistics is tested as a function of spatial and temporal

scales to establish a benchmark for comparison between

models and observations at various scales. Last, the

CWV–precipitation relationship is examined physically

by linking vertical profiles of key thermodynamic quan-

tities and plume buoyancies computed using turbulent

mixing to the observed onset of deep convection.

2. Data

A suite of observations is used to establish relation-

ships between CWV and deep convection across vari-

ous instruments, time periods, and tropical locations.

The principal location examined is the DOE ARM

Mobile Facility at Manacapuru, Brazil (38120S, 608350W;

50-m altitude), established as part of the GOAmazon

field campaign (January 2014–December 2015). The

GOAmazon data used in this study cover the period

from 10 January 2014 to 20 October 2015. The results for

the GOAmazon site are compared with those derived

from two retired DOEARM sites in the tropical western

Pacific: Nauru (08310S, 1668540E; 7-m altitude) and

Manus Island (2830S, 1478250E; 4-m altitude). The anal-

ysis period used in this study and inHolloway andNeelin

(2009) for Nauru spans April 2001–August 2006, and the

analysis period from Manus Island spans January 2008–

December 2010. In terms of radiosonde launches, these

periods yield roughly comparable numbers to thewestern

Pacific sites (3320 for Nauru and 3309 for Manus), each

somewhat larger than the 2379 for GOAmazon.

Additional observations from a GPS meteorological

station in Manaus, Brazil, are included in this study; this

station functioned fromJuly 2008 toDecember 2011 as part

of the National Oceanic andAtmospheric Administration/

Earth System Research Laboratory (NOAA/ESRL)

Real-Time Ground-Based GPSMeteorological Network

and was located at the National Institute for Amazon

Research/Large-Scale Biosphere-Atmosphere Experi-

ment (INPA/LBA) in Manaus (2.618S, 60.28W) (Adams

et al. 2013, 2015).

a. Column water vapor

Radiosonde measurements at all ARM sites were

obtained from Vaisala Digi-Cora III sounding systems

at 2-s resolution; the raw sounding data were in-

terpolated to 5-mb intervals (1mb 5 1hPa). Reported

instrumental uncertainties are approximately 0.58C for

temperature and 5% for relative humidity below

500mb. At the GOAmazon site, radiosonde launches

occurred four times daily (6 hourly) at 0530, 1130, 1730,

and 2330 UTC, with occasional launches at 1430 UTC

during the wet season. At Nauru, launches took place at

0000 and 1200 UTC, with occasional launches at 0230

and 1430 UTC, while at Manus Island, most launches

took place at either 1130 or 2330 UTC, with occasional

launches at 0330 or 1530 UTC.

CWV data sampled by microwave radiometer (MWR)

at theGOAmazon site are derived frommeasurements of

absolute microwave radiances (expressed as brightness

temperatures) obtained at two frequencies: 23.8 and

31.4GHz. The retrieval uncertainty for brightness tem-

peratures is 0.3K and for CWV is typically;0.5mm. The

data used here are derived from radiance measurements

with a statistical retrieval algorithm that uses monthly

derived and location-dependent linear regression co-

efficients (Liljegren 1999). Data from another CWV

product derived from a more physically based retrieval

(Turner et al. 2007) are compared to these data in the

appendix. All data for which the brightness temperature

exceeds 100K are removed from this dataset (Morris

2006), as are data that are affected by direct sunlight near

local noon (1500–1700 UTC) for roughly a 3-week period

surrounding the equinoxes. To address the so-called wet-

window problem, in which water collecting on the surface

of the lens introduces measurement inaccuracy during

rainy periods, we linearly interpolate CWV values across

time periods of 6h or less. While the existence of the wet-

window problem introduces uncertainty, particularly

within the highest CWV bins, we argue that the linear

interpolation procedure likely underestimates peak

CWVand is justified given that the data gaps are typically

short and the temporal persistence of water vapor values

for strong convective events is on the order of hours

(Holloway and Neelin 2010). Additionally, the appendix

(Fig. A1) illustrates that there is no obvious systematic

bias at high CWV for the times sampled (15-min-average

radiometer CWV surrounding radiosonde launch be-

tween 10 January and 31 July 2014), which suggests that

this interpolation does not greatly affect the results pre-

sented in this study.

One way to overcome measurement inaccuracy during

rainy times is through use of GPS technology, as its all-

weather capability allows for CWVmeasurements during

rainy times (Adams et al. 2011; Adams et al. 2015). The

CWV from GPS is derived from water vapor–induced

delays in the radio signals from the satellite to the ground-

based receiver (Bevis et al. 1992), and its accuracy in the

Amazon is on the order of 1–2mm (Adams et al. 2011).

The INPA site consisted of a dual-frequency, geodetic-

gradeGNSS receiver/antenna andmeteorological station

concurrently measuring pressure, temperature, relative

humidity, winds, and precipitation at 1-min sampling
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frequency. NOAA/ESRL processed the GNSS data in

near–real time (2-h latency), with 30-min-average CWV

values used in this study.

b. Precipitation

The GOAmazon precipitation measurements analyzed

in sections 3 and 4 are from the Meteorological Mea-

surements associated with the Aerosol Observing System

(AOSMET), measured by the acoustic gauge of a Vaisala

WXT520. When related to radiosonde CWV, AOSMET

precipitation is averaged at 1-h intervals surrounding the

launch; for analyses with radiometer CWV, AOSMET

precipitation is averaged at 15-min intervals. In section 3,

the averaging intervals are varied to evaluate the robust-

ness of the statistics. These data were chosen among many

other datasets available becausewedeemed them themost

reliable over the full 2014/15 period (a detailed comparison

of the different precipitation observing systems available

at the GOAmazon site is included in the appendix).

The precipitationmeasurements used in this study vary

slightly across sites owing to differences in instrumen-

tation availability and reliability. In the tropical western

Pacific at the Nauru and Manus Island ARM sites, pre-

cipitation was measured with anOptical Scientific optical

rain gauge (ORG815), and 1-h averages surrounding ra-

diosonde launches are analyzed in section 2. Section 5

uses precipitation from a Vaisala WXT-520 at the INPA

site in Manaus, Brazil (30-min averages) for the analysis

with GPS-derived CWV.

Section 4 assesses the robustness of the statistics pre-

sented as the horizontal resolution of the precipitation

measurements decreases. We thus average precipi-

tation from the Tropical Rainfall Measuring Mission’s

(TRMM) 3B42 version 7 product across various spatial

scales. The 3B42 precipitation estimates (mmh21) have a

3-hourly temporal resolution on a 0.258 3 0.258 grid,

covering 508S–508N from 1 January 1998 to the present.

The TRMM 3B42 precipitation estimates are a combi-

nation of multiple independent precipitation estimates

from various microwave retrievals and algorithms, while

missing data in individual 3-hourly merged-microwave

retrievals are filled with microwave-adjusted merged

geo–infrared (IR) estimates. The Precipitation Radar

(PR) and TRMM Microwave Imager (TMI) are used to

calibrate all inputmicrowave data, while the IR estimates

are computed using monthly matched microwave–IR

histogram matching (Huffman et al. 2007). Estimates of

precipitation from the microwave instruments are de-

rived from several versions of the Goddard profiling al-

gorithm (GPROF), a multichannel physical approach

used to retrieve rainfall and vertical structure information

(Kummerow et al. 2001). Over the oceans, GPROF uses

signals from emission at low frequencies and scattering at

higher frequencies. Over land, the algorithm reduces to

a scattering-type procedure using only the higher-

frequency channels. All of these estimates are adjusted

to a best estimate using probability matching of pre-

cipitation rate histograms assembled from coincident

data. Note that both the microwave and IR data are

snapshots, except for small regions in which two or

more overlapping microwave scenes are averaged.

Generally, however, each satellite provides a sparse

sampling of precipitation. As a result there can be

significant gaps in the 3-hourly coverage by passive

microwave estimates. Because of this, precipitation

estimates can be thought of as instantaneous values,

representative of the 3-h period in which they fall.

3. The relationship between deep convection and
CWV over tropical land versus tropical oceans

a. The GOAmazon site—Manacapuru, Brazil

To illustrate the relationship between CWV and deep

convection at the GOAmazon site, we conditionally

average precipitation rate by CWV in Fig. 1. Figure 1a is

the 1-h-average precipitation rate conditioned on ra-

diosonde CWV, with the average centered at the time of

radiosonde launch.Measurements for all available times

(0530, 1130, 1730, and 2330 UTC, and occasionally

1430 UTC) were included in the averages. Note that for

the statistics presented throughout, CWV bins are typi-

cally of equal 1.5-mmwidths and range from 28 to 70mm;

exceptions to this will be noted where appropriate, such

as here, where the highest CWV bin spans 6mm from 64

to 70mm, in order to include sufficient counts.

Beyond a thresholdCWVvalue, a sharp increase in rain

rate is evident. This confirms that the CWV–precipitation

relationship and associated behavior exists over tropical

land as it does over tropical oceans (Peters and Neelin

2006; Neelin et al. 2009; Holloway and Neelin 2009). The

limited sampling of high CWV in the GOAmazon ra-

diosonde observations, reflected in the large error bars

(plus or minus one standard error), limits the precision

with which the behavior above the pickup can be esti-

mated; nevertheless, the data are sufficient to establish the

occurrence of the pickup, and the radiosonde observa-

tions are key to analyzing the vertical structure, which will

be discussed in section 6 below.

The larger sample size of radiometer CWV affords

better quantification of the behavior at high CWV

(Fig. 1d). For this purpose, Figs. 1d–f include four addi-

tional 1.5-mm bins at high CWV, in comparison to

Figs. 1a–c. A sharp pickup is clearly evident in this

dataset. Additionally, the conditionally averaged rain

rates in the 61–64-mm range in Fig. 1a and the magni-

tudes observed in the 61–64-mm range of Fig. 1d mimic
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each other, demonstrating the robustness of the results

across various instruments. A strong correlation (R 5
0.91) between the 15-min-average radiometer CWV and

radiosonde CWV (see Fig. A1) further highlights this

consistency. Note that standard error bars in Figs. 1a and

1d reflect only the precipitation variance and number of

counts in each bin as an estimate of sampling error and do

not account for potential errors in CWV estimation.

The value of CWV at which the rapid pickup in pre-

cipitation begins, referred to as the critical value, is a

useful measure in characterizing this onset. For the short,

in situ datasets used here, empirical fits involve relatively

few points with large error bars, so we simply use the point

at the beginning of the rapidly increasing range as a rule of

thumb. Estimating the critical value by a linear fit through

the range over which precipitation is rapidly increasing, as

in Sahany et al. (2014), and choosing a range of above

1mmh21 (appropriate for these data) yields a CWVvalue

of ;60mm where the interpolation crosses 1mmh21

(Fig. 1d). This range is, however, instrument dependent.

Comparedwith the results fromNeelin et al. (2009), the

mean-tropospheric temperature at the GOAmazon site is

271.4K, so the location of the pickup for GOAmazon

occurs at lower CWV (;61mm) than for comparable

temperatures in the tropical eastern Pacific (;65mm,

interpolated between 271 and 272K). This is consistent

with the expectation that the mean-tropospheric temper-

ature is only one of several controls on the onset of con-

ditional instability and thus the location of the pickup and

indicates that other key factors differing between tropical

land and ocean are reflected in the onset. Specifically,

boundary layer dynamics introduce additional complexity

to the transition to deep convection over land, as the di-

urnal cycle is stronger over land and the partitioning of

surface net radiation between latent and sensible heat

fluxes depends on the interactions between several sur-

face attributes (e.g., vegetation growth and soil moisture)

and the atmosphere.

The curvature above the critical CWV in the radi-

ometer analysis qualitatively resembles the behavior

observed over the tropical oceans (Peters and Neelin

2006; Neelin et al. 2009), but we are cautious in drawing

conclusions about this given the scatter at high values

and limitations of the radiometer. The quantitative

FIG. 1. The relationship between precipitation and CWV at the GOAmazon site in Manacapuru, Brazil. (a) The 1-h-average pre-

cipitation (mm h21) centered at the time of radiosonde launch conditionally averaged on CWV (mm). The mean of precipitating points

greater than 0.1mmh21 is 2.72mmh21, given by the black triangle on the y axis, and the error bars represent the standard error. (b) The

fraction of observations per CWVbin with rain rates greater than 0.5mmh21, for radiosonde CWV. (c) The frequency density of all points

and precipitating points with rain rates greater than 0.5mmh21, for radiosonde CWV. Error bars are the square root of the counts in each

CWV bin normalized by the bin width. (d)–(f) As in (a)–(c), respectively, except using 15-min-average CWV fromMWR. The CWV bins

for each set of analysis are given by their respective color bars. The highest bin for the radiosonde analysis has a width of 6mm and a range

from 64 to 70mm, differing slightly from that of the radiometer data.
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values of the conditionally averaged precipitation in the

pickup region are slightly smaller than those in micro-

wave retrievals in Neelin et al. (2009) and Sahany et al.

(2014), presumably in part a result of inherent un-

certainties at high rain rates, particularly in the satellite

observations where precipitation is inferred from cloud

liquid water. Comparing the 15-min averages from the

GOAmazon site to microwave retrievals over the trop-

ical oceans (effectively snapshots) may also play a role.

Figures 1b and 1e illustrate an equally sharp increase in

probability of precipitation as a function of CWV com-

parable to that shown for conditionally averaged rain rate

in Figs. 1a and 1d, respectively. The fraction of pre-

cipitating points per CWVbin is defined as the number of

CWV observations with rain rates greater than a small

threshold (here 0.5mmh21), divided by the total number

of CWV samples in each bin. The probability increases

dramatically above the critical value, sharply increasing

to values greater than 50% in the highest CWV bins.

Figures 1c and 1f show the frequency of occurrence of

different CWV values for all times and for precipitating

times (where precipitation rates exceed 0.5mmh21) at

the GOAmazon site for radiosonde and radiometer

CWV, respectively. Curves are scaled with respect to

CWV bin sizes, similar to a probability density function

(PDF) but in counts per millimeter—referred to here as

frequency density. We chose not to normalize to instead

yield PDFs tomake the counts for each bin visible, as the

lengths of the available datasets vary by instrument and

location. The peak in the distribution of CWV, for both

the radiometer and radiosonde analysis, occurs between

55 and 60mm. The occurrence of the peak in the dis-

tribution occurs just below the critical point, consistent

with the findings of Peters and Neelin (2006) and Neelin

et al. (2009). The highest probability state of the system

is near the beginning of the intense precipitation regime,

as is shown by the distribution of precipitating points

(the peak occurs in the 61–62.5-mm bin in the radiom-

eter analysis and is slightly more spread out in the ra-

diosonde data). Below 45mm, no events exceeding the

0.5mmh21 threshold are observed.

The longer-than-Gaussian tails of this distribution are

also consistent with those seen in previous studies

(Neelin et al. 2009, 2010), seen here with different in-

strumentation. Because of the lower number of radio-

sonde observations, we focus on radiometer observations

(Fig. 1f). First, there is a long tail extending toward lower

CWV in the distribution for precipitating points. The

peak occurs just below or near the critical point, with a

sharp decrease in frequency toward higher CWV in the

region of rapid pickup of precipitation, consistent with

the dissipative effects of precipitation on CWV (and of

convection on buoyancy). Beyond the critical value, there

is evidence of a long tail with roughly exponential decay

as CWV increases, suggesting that the system is charac-

terized by a higher frequency of extremes than would be

expected from Gaussian statistics. This behavior is par-

ticularly evident in the radiometer analysis shown in

Fig. 1f, but low counts in the high CWV bins and mea-

surement uncertainty limit confidence in this feature.

Many of the onset statistics can be qualitatively and

quantitatively captured by a simple stochastic model

(Stechmann and Neelin 2011). This model suggests that

the long tail for precipitating points in the low CWV

regime is associated with a transition probability in

which it typically takes some time to transition to a

nonraining state when CWVdecreases from the raining

regime. The same hysteresis affects the position and

value of the peak in the distribution for precipitating

points, consistent with results here, suggesting it may

be interesting in further work to distinguish temporal

aspects of the transition, including distinguishing pre-

cipitating shallow and congestus convection or the

formation of stratiform rain from deep precipitating

convection (Ahmed and Schumacher 2015), as this is

also a possible explanation of such characteristics of the

distribution. The behavior of the distribution for all

points at low CWV is expected to be rather dependent

on the dynamics of the dry regime and has been noted

to have various forms over ocean basins, including a

second maximum. This may occur near the balance

between evaporation and moisture divergence (Lintner

and Neelin 2009).

b. The tropical western Pacific

Figure 2 illustrates the CWV–precipitation relation-

ship for two sites in the tropical western Pacific—Nauru

(Figs. 2a–c) andManus Island (Figs. 2d–f). Compared to

the Amazon in Fig. 1, the tropical western Pacific sites

show very similar behavior. Radiosonde estimates are

shown in Fig. 2, which can be directly compared to

Figs. 1a–c. Both pickups of precipitation, for Nauru

(Fig. 1a) andManus Island (Fig. 1d), occur at higher values

of CWV (;67mm) than in theAmazon. As was discussed

in section 1a, this is due in part to small differences in the

mean-tropospheric temperatures (272.0K at Nauru and

271.9K at Manus Island) but is also likely due to funda-

mental differences in the convective environments of a

tropical land site versus a tropical oceanic site. For refer-

ence, the values of column-integrated saturation specific

humidity cqsat for the three sites are 76.0, 75.2, and 73.0mm

at Nauru, Manus Island, and the GOAmazon site, re-

spectively, although it is known for tropical ocean basins

spanning a wider range of tropospheric temperatures

that cqsat poorly captures the temperature dependence

(Neelin et al. 2009; Sahany et al. 2012) because the
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relevant physical control is conditional instability rather

than large-scale saturation.

As in the GOAmazon case, the fractions of pre-

cipitating points (Figs. 2b and 2f, for Manus Island and

Nauru, respectively) sharply increase to 50% or greater

beyond a critical CWV. This, again, illustrates that a

sharp transition occurs not only in rain rate but also in

the probability of precipitation beyond a threshold

CWV. In Fig. 2c, Manus Island exhibits distinct peaks in

its distributions: the peak of the CWV distribution oc-

curs between 58 and 60mm, whereas the peak in the

distribution of precipitating points occurs between 60

and 63mm. This is consistent with the findings from

previous studies, where the peak in the precipitating

points occurs at slightly lower CWV than the critical

value. Also consistent is the sharp decrease in the fre-

quency of CWV between the distribution peak and the

CWVvalues where precipitation picks up rapidly. These

characteristics are also observed for Nauru, but the

peaks in the distributions of CWV and the precipitating

points are broader in this sample from radiosondes; that

is, the CWV distribution peak spans roughly 8mm

(;50–58mm), whereas the peak in the distribution of

precipitating points spans roughly 10mm (;57–67mm).

Even though marginal differences can be observed

across locations, the main features of these statistics are

consistent and robust across all three tropical locations.

Though these statistics were not examined near regions of

strong topographic forcing, land–sea contrasts, or other

inhomogeneity, it has been suggested that these com-

plexities can impact the statistics (Bergemann and Jakob

2016), as additional processes driving deep convection in

these regions are not adequately captured with proxies

such as CWV or column saturation. Nevertheless, the re-

sults presented here suggest that CWV is a good proxy for

conditional instability and has a clear relationship to the

onset of deep convection throughout much of the tropics.

4. The robustness of the observed statistics at
various scales

a. The effects of temporal averaging

To explore how averaging over differing temporal

scales can affect the statistics describing the transition to

deep convection, we compute the transition statistics at

various averaging intervals with in situ precipitation and

radiometer CWV from the GOAmazon site. Four aver-

aging intervals were chosen for this analysis: 15-min, 1-h,

3-h, and 1-day averages. These intervals were chosen to

be most comparable to the current output available from

models and observations.

In Fig. 3a, the magnitude of the conditionally averaged

precipitation in the highest four CWV bins diminishes

considerably as the averaging interval increases. Up to

FIG. 2. As in Fig. 1, but for the relationship between precipitation and radiosondeCWVat (a)–(c) Nauru and (d)–(f)Manus Island in the

tropical western Pacific. The mean of precipitating points greater than 0.1mmh21 is 2.18mmh21 for Nauru and 2.78mmh21 for Manus

Island. CWV bins are as in Figs. 1d–f (see color bar).
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and including 3-hourly averages, the magnitude and

sharpness of the pickups are largely preserved. Beyond

3h, the pickup is noticeably degraded. However, adapt-

ing the scale of the precipitation to the decrease in reso-

lution (not shown) illustrates that despite the decreased

sharpness of the pickup, the precipitation still increases

with increasing CWV. Despite some variability in the

shapes of the curves, the overall locations of the pickups

are robust for temporal resolutions of 3h or less. The

location of the probability curve pickup in Fig. 3b, how-

ever, varies substantially as the size of the averaging in-

terval increases: larger averages pick up sooner and

have a higher probability of precipitating at high CWV.

This can be explained by the fact that the 3-hourly and

daily averages are more likely to span times when it is

raining than the shorter averages are. The overall shape

of the distribution is preserved with averaging (Fig. 3c),

but the mean shifts to lower CWV and the tails of the

distribution are shorter. Overall, these results illustrate

how the statistics vary with temporal resolution, which

should be considered when applying them as model

diagnostics.

b. The effects of spatial averaging

The relationship between spatially averaged TRMM

3B42 3-hourly instantaneous precipitation (see section 2)

and radiometer CWV (15-min averages) over the

GOAmazon site is shown in Fig. 4 for 0.258 3 0.258
(Figs. 4a–c), 1.258 3 1.258 (Figs. 4d–f), and 2.58 3 2.58
(Figs. 4g–i). At either 0.258 or 1.258, the relationship is

comparable to the results in Fig. 1 and thus robust. At

2.58, however, it starts to deteriorate, as the pickup of

precipitation and the percentage of precipitating points

occur too soon in comparison to Figs. 1d and 1e. These

results are encouraging, as they suggest that resolu-

tions up to about 1.258 3 1.258 are still of sufficient

spatial resolution to reproduce robust statistics that ex-

plain the CWV–precipitation relationship, given that

the temporal resolution is also adequate. This implies

that these statistics are reproducible using the horizontal

resolutions available with many current generation

GCMs. In such comparisons, it should be borne in mind

that a GCM with, for example, 28 resolution may re-

spond at the finest scale available to it (i.e., the grid

scale) in a manner similar to the convective response

occurring at finer scales in observations.

5. Use of GNSS meteorological networks in the
tropics

For two decades, GNSS/GPSmeteorology has offered

relatively inexpensive, high-frequency (;5min), all-

weather retrievals of CWV and is thus ideal for ana-

lyses requiring long, continuous records of observed

CWV over land. This is particularly useful for studies in

the tropics, where collecting in situ measurements is a

challenge. We thus evaluate the convective transition

statistics here for GPS data from a site in Manaus. In

Fig. 5, the statistics are reproduced for GPS CWV and

coincident measurements of precipitation (30-min av-

erages) as in Fig. 1. Note that the precipitation mea-

surements from the INPA site are biased low (see

appendix). Therefore, for better comparison to the sta-

tistics in Fig. 1, the range shown on the precipitation axis

(0–1.28mmh21) is reduced relative to the range on the

other pickup plots (0–6mm) by a factor of 4.7—the ratio

of means of precipitating points between the 30-min-

average precipitation from both sites. Additionally, the

threshold for identifying precipitating points is lowered

to 0.1mmh21 to more appropriately complement the

0.5mmh21 threshold used in Fig. 1.Whenmeasurement

differences are properly accounted for, Figs. 1 and 5

compare well: the location and shape of the pickup of

precipitation is consistent, the probability of pre-

cipitation is just below 50% in the highest bin, and the

distribution of CWV and precipitating points resides

FIG. 3. As in Figs. 1d–f, using in situ precipitation and radiometer CWV from theGOAmazon site, but with additional averaging intervals:

15min (red), 1 h (yellow), 3 h (green), and daily (blue).
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near to the transition, with a sharp drop in frequency

between the peak and the transition and a long tail ex-

tending out to high CWV. This suggests GPS technology

will be valuable in observing characteristics of convec-

tion at high temporal resolution throughout tropical

land regions.

6. Characterizing the variability of column
moisture

a. Vertical thermodynamic profiles

Vertical profiles of thermodynamic quantities—specific

humidity q, relative humidity (RH), and equivalent

potential temperature ue—are conditionally averaged

on CWV in Figs. 6a–c, respectively. In Fig. 6a, it is ev-

ident that profiles of q are most variable in the layers

above 800mb at the GOAmazon site. This differs

slightly from the western Pacific case, as the variability

in free-tropospheric q (850–500mb) with respect to

CWV is slightly less over the Amazon than it is for

Nauru [see Fig. 3a of Holloway and Neelin (2009)],

presumably owing to stronger horizontal moisture

gradients near Nauru (Lintner et al. 2011). Addition-

ally, the contribution from the boundary layer is greater

at the GOAmazon site with an approximately 4 g kg21

difference in humidity between the lowest and highest

bins at 975mb (Fig. 6a), whereas the difference is less

than half this value at Nauru.

Profiles of RH (RH with respect to water) belonging

to the highest CWV bins at the GOAmazon site

(.61mm) are at least 90% saturated throughout the

lower troposphere. At Nauru, this is the case for CWV

greater than 66mm [see Fig. 4a of Holloway and Neelin

FIG. 4. As in Figs. 1d–f, except using area-averaged TRMM 3B42 3-hourly instantaneous precipitation at varying resolution from the

grid box that includes the GOAmazon site; CWV values are derived from the 15-min averages of MWR data surrounding the TRMM

snapshot. (a)–(c) Precipitation at 0.258 3 0.258 horizontal resolution (grid box over GOAmazon site); (d)–(f) spatial average of pre-

cipitation at 1.258 3 1.258 around GOAmazon site; (g)–(i) as in (d)–(f), respectively, but for 2.58 3 2.58.
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(2009)], suggesting that the column is saturated for

lower CWV in the Amazon than it is over the tropical

western Pacific. Additionally, the boundary layer RH is

roughly twice as variable over the Amazon as it is over

Nauru, ranging from an approximately 35% difference

at 975mb between the highest and lowest bins versus an

approximately 15% difference at Nauru. The variability

observed in RH is highly consistent with variability in

column moisture, since free-tropospheric temperature

variations tend to be modest.

Equivalent potential temperature ue, calculated re-

versibly following Emanuel (1994) in Fig. 6c, is an

approximate measure of nonentraining parcel buoy-

ancy, as convective available potential energy (CAPE)

can be approximated by drawing a vertical line upward

from the initial ue. Where this line crosses the ues curve

is roughly the level of free convection (LFC) of the

unmixed parcel; the area to the left of the vertical line

and to the right of the ues curve is roughly proportional

to CAPE. The pattern of ue at the GOAmazon site

shows similar overall variability in the vertical as it

does at Nauru. In the absence of entrainment, many of

the profiles belonging to the highest CWV bins have

sufficient ue to support deep convection, providing that

the convective inhibition (CIN) residual from the

nighttime hours (seen in the ue profile) could poten-

tially be overcome. This will be discussed further in

section 7.

b. Moisture anomalies

Figure 7 illustrates the differences in q at 1.5–3 h

leading (red) and 1.5–3 h lagging (blue) precipitation,

between profiles corresponding to precipitation events

(rain rate. 0.5mmh21) and those that do not correspond

FIG. 6. Vertical profiles of (a) specific humidity (g kg21), (b) relative humidity (%), and (c) equivalent potential temperature

(K) measured or derived from radiosonde data collected at the GOAmazon site and conditionally averaged by CWV (mm). The mean

saturated equivalent potential temperature ues (K) for profiles greater than 50mm is shown in the dashed line in (c).

FIG. 5. As in Figs. 1a–c, except using in situ precipitation (30-min averages) binned by 30-min GPS-retrieved CWV from a site at the

INPA inManaus, Brazil. (a) The triangle denotes themean of precipitating points. 0.1mmh21, which is 1.04mmh21. Note the change in

the precipitation axis in comparison to Figs. 1a and 1d and the change in threshold value used in Figs. 5b and 5c. The rain gauge at the

INPA is biased low (see appendix), and thus, to allow for direct comparison to the GOAmazon case, the range on the precipitation axis

defined in Figs. 1a and 1d (0–6mm) is decreased here by a factor of 4.68, the ratio of the means between the AOSMET gauge and the

INPA gauge.
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to a precipitation event (rain rate , 0.01mmh21) for

January–April soundings only. Leading an event, mois-

ture anomalies exceeding 0.5 g kg21 and as large as

1 g kg21 are seen clearly throughout the lower tropo-

sphere, with a particularly large increase between 750

and 950mb. This is consistent with evidence that in-

creased low-tropospheric humidity supports deep con-

vective initiation. These moisture anomalies are also

seen in the tropical western Pacific at Nauru [Fig. 5 of

Holloway and Neelin (2009)], where anomalies as large

as 3 g kg21 occur in the lower to midtroposphere within

3 h of a precipitation event. It is worth noting that the use

of a higher precipitation threshold as in Holloway and

Neelin (2.5mmh21) does not change the results pre-

sented here with a 0.5mmh21 threshold. The anomaly

in the lowermost layer at the GOAmazon site is more

distinct from and almost as large as the anomaly within

the hour of rainfall compared to the anomalies at Nauru,

which show a consistent vertical structure at all times

leading and lagging rainfall. This illustrates the greater

moisture variability in the boundary layer over land

preceding convection. It can be seen at both sites, how-

ever, that a distinct increase in moisture is present in the

lower troposphere. There are likely multiple causes of

this moistening in the lower troposphere preceding con-

vection at both locations, including mixing and de-

trainment of water from shallow cumulus convection, in

concert with convergence or lifting. Regardless of the

cause, it will become evident in the next section as we

examine the role of entrainment that sufficient lower-

free-tropospheric moistening is essential to the onset of

deep convection.

During a precipitation event, the anomaly in the 750–

950-mb layer decreases, suggesting that moist air is lof-

ted by updrafts, with drier air from downdrafts diluting

the layer’s moisture content. The increased anomaly of

mid- to upper-tropospheric humidity between 200 and

700mb is likely due to the effects of convection via some

combination of lofting and detrainment of moist air and

large-scale ascent induced by convective heating, po-

tentially including stratiform effects. As precipitation

dissipates, this mid- to upper-tropospheric anomaly per-

sists for hours afterward, which may aid in supporting

subsequent convective events. These anomalies are pres-

ent in the tropical western Pacific case as well, but the

vertical structure is more consistent throughout the 6-h

period than it is for the GOAmazon case; that is, the

maximum q anomaly at all times is around 800mb. In the

GOAmazon case, on the other hand, the maximum 1.5h

before precipitation is found around 900mb, during pre-

cipitation it is around 700mb, and after precipitation it is

found at about 500mb. Additionally, separating the

analysis out by time of day (not shown) indicates that

these moisture anomalies are consistent for events oc-

curring at all times of day.

Overall, in both the Amazon and the tropical western

Pacific, humidity is enhanced throughout most of the

troposphere for several hours leading and lagging the

original precipitation event. Free-tropospheric humidity

appears to behave similarly in land and ocean cases

(although with larger amplitude variation in the western

Pacific), whereas boundary layer moisture is more var-

iable on short time scales in the land case. The Amazon

also more clearly exhibits upper-tropospheric moisture

anomalies in the hours following precipitation, while

both the Amazon and western Pacific exhibit reduced

boundary layer moisture.

c. Dependence on time of day

Considering the strength of the diurnal cycle over

land, it is natural to wonder whether CWV is a good

proxy for conditional instability at all times of day, given

how conditions contributing to instability can vary di-

urnally. Figure 8 suggests that the relationship between

CWV and precipitation is robust at all times of day.

Figure 8a shows the relationship between 15-min-average

radiometer CWV and precipitation for nighttime hours

(2300–1200 UTC). The time intervals were chosen to

complement the radiosonde launch times and the anal-

ysis presented in section 7. Figure 8d shows this relation-

ship for the midday hours, which are the most convective

hours of the day (1400–2000 UTC). The pickups of both

FIG. 7. Profiles of specific humidity differences (g kg21) from

radiosonde measurements at the GOAmazon site between pre-

cipitation events (1-h-average rain rates . 0.5mmh21) and no

precipitation events (1-h-average rain rates , 0.01mmh21) for

1.5–3 h leading precipitation (red), during the hour of precipitation

(black), and 1.5–3 h lagging precipitation (blue). Results are shown

for January–April only (2014/15).
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conditionally averaged precipitation (Figs. 8a and 8d)

and the probability of precipitation (Figs. 8b and 8e) af-

firm that the relationship is robust throughout all times

of day. The frequencies of occurrence of precipitation

(Figs. 8c and 8f) are also consistent with the results in

Fig. 1. Despite the fact that more convection occurs in the

midday hours over the Amazon, the relationship holds

true for all times of day.

7. The sensitivity of plume buoyancy to
entrainment under simple freezing assumptions

In this section, we focus on connecting the observed

pickup of precipitation to observed increases in buoy-

ancy and the sensitivity to entrainment.We calculate the

buoyancy perturbation profiles, the virtual temperature

difference between the environment and the plume

(DTy 5Ty,plume 2Ty,env) for plumes rising from the sub-

cloud layer (1000mb), with mixing occurring at each

pressure level as described by

r
k
5 (12X

k21
)r

k21
1X

k21
~r
k21

, (1)

where X is the mixing coefficient, r is a conserved vari-

able (with ~r its environmental value), and k denotes

pressure level if X varies. Here we calculate the mixing

coefficient proportional to z21, where z is height, in the

layer in which plume mass flux is growing. This mixing

assumption was referred to in Holloway and Neelin

(2009) as deep inflow A (DIA) and corresponds to the

Siebesma et al. (2007) LES-based dependence. DIA is

chosen here because of its realistic representation of

buoyancy perturbation profiles and overall consistency

with the pickup of precipitation observed in Fig. 1 and is

described as

X
k
5 c

e
z21
k Dz , (2)

where Xk is the coefficient in (1), Dz is a positive finite-

difference-layer depth, and c� 5 0.4. Following

Holloway andNeelin (2009), a simplified limiting case of

freezing microphysics is also used: all condensate is

conserved and freezing is assumed to take place very

rapidly when the parcel reaches the freezing level.

The individual perturbation profiles are shown in

Fig. 9 and have been conditionally averaged by CWV,

with bin spacing as in Fig. 1a. Figure 9a illustrates the

profiles of the radiosondes from all times of day. It is

evident that only the highest CWV bins could be con-

vective through a deep layer, as both the CIN (between the

surface and;850mb) and reduced buoyancies in the mid-

to upper troposphere are more likely to inhibit deep con-

vection at lower CWV. Since the afternoon is the most

convective time of day in the Amazon, we also separate

the profiles by time of day to examine key thermodynamic

differences and how stability in the nighttime hours could

be contributing to the CIN observed in Fig. 9a.

Figure 9b, which includes nighttime soundings only

(2330, 0530, and 1130 UTC), shows the larger layer of

CIN seen in Fig. 9a, which suggests that this CIN is most

FIG. 8. As in Figs. 1d–f, but for (a)–(c) nighttime hours (2300–1200 UTC) and (d)–(f) midday hours (1400–2000 UTC) only.
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characteristic of the nighttime soundings.At these times of

day, it is unlikely for convection to fire as a result of local

instability, but the profiles at highCWVappear supportive

of deep convection if forced (Fig. 9b). In Fig. 9c, only

profiles from late morning (1430 UTC) and early after-

noon (1730 UTC) soundings were conditionally averaged

by CWV. In contrast to the evening and morning sound-

ings, there is very little CIN. The variability observed in

the upper CWV bins is due to the low counts of profiles

contributing to the average. Overall, it appears that a va-

riety of CWV values would be conducive to convective

activity in the afternoon hours, with CWV bins less than

60mm acting to support shallow convection, whereas only

the highest CWV bins act to support deep convection.

The entrainment calculations suggest that CWV has a

causal effect on deep convection, but they do not indicate

the extent to which this effect dominates the observed

relationship. Evidence suggests that CWV can also covary

with convective precipitation (Raymond et al. 2015). A

concurrent study evaluating causality with modeling ex-

periments (Y.-H. Kuo et al. 2016, personal communica-

tion), shows that without sufficient entrainment the pickup

behavior observed in the relationship between pre-

cipitation and CWV (Figs. 1 and 2) does not occur.

Some caveats on this analysis should be noted:

1) The plume buoyancies sorted by CWV are consid-

erably smaller in the lower troposphere compared to

the tropical western Pacific case for the same com-

putation (Holloway and Neelin 2009, their Fig. 8c).

The onset of deep convection is thus likely depen-

dent on other factors unique to tropical land cases—

in particular, the greater variability of the boundary

layer, as both sensible and latent heat fluxes are more

variable. Additionally, there are key thermodynamic

differences between the convective environments in

the wet and dry seasons in the Amazon and thus

likely differing thermodynamic controls on deep

convection; that is, during the wet season, there is

less CIN, less CAPE, and more moisture available

throughout the column, whereas in the dry season

there is more CIN, more CAPE, and less moisture

available in the column (Collow et al. 2016).

2) Entrainment assumptions can affect the details of the

buoyancy profiles seen in Fig. 9c. In particular,

smaller (larger) values of themixing coefficient in the

lower troposphere yield larger (smaller) buoyancy

values. Here it is useful to use a scheme that has al-

ready been applied to corresponding soundings at

the western Pacific ARM site, but one could evaluate

in further work whether there is evidence for dif-

ferences in entrainment characteristics for deep

convection over land in comparison to the ocean.

More complex entrainment assumptions would ob-

viously also have an impact—for example, rescaling

the entrainment from the cloud base (de Rooy et al.

2013; Bechtold et al. 2014), the entrainment rate

weakening as convection over land deepens (Del

Genio and Wu 2010; Stirling and Stratton 2012),

having a parameterized dependence on environ-

mental humidity (Zhang and Klein 2010; Stirling and

Stratton 2012), or a dependence on cloud size

(Simpson 1971; Grabowski 2006; Khairoutdinov and

Randall 2006; Stirling and Stratton 2012). However,

the computations here indicate a strong dependence

on free-tropospheric humidity can be found even

with fixed entrainment.

3) Associated with the smaller buoyancy in the lower

free troposphere compared to the oceanic case, the

role of freezing is more important to occurrences of

FIG. 9. Virtual temperature (Ty) difference between the parcel (computed with turbulent entrainment) and the environment, binned by

CWV.CWVbins are 1.5mm in width (color bar), with the highest bin spanning 64–70mm and the lowest bin spanning 30–41.5mm. Plume

buoyancy differences are shown for (a) all times of day, (b) nighttime soundings (2330, 0530, and 1130 UTC) soundings only, and (c)

midday (1430 and 1730 UTC) soundings only.

OCTOBER 2016 S CH IRO ET AL . 4055

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/11/21 09:31 PM UTC



positive buoyancy in the upper troposphere. If freez-

ing is completely omitted, the jump in buoyancy seen

near 550mb inFig. 9 does not occur, and profiles in the

upper troposphere decrease slightly faster with height,

yielding little buoyancy even in the high CWV cases.

Microphysical differences are known to exist in con-

tinental versus maritime deep convective clouds:

robust mixed-phase processes dominate continental

convection, whereas maritime deep convection rarely

involves vigorous microphysical processes in mixed-

phase regions, although ice processes are still impor-

tant (Rosenfeld and Lensky 1998; Xu and Zipser

2012). Proper representation of microphysical pro-

cesses in models can affect simulation of clouds and

precipitation (Khain et al. 2015; Zhang and Song

2016), and these processes can be significantly altered

by different concentrations of aerosols (Andreae et al.

2004; Rosenfeld et al. 2008; Grabowski and Morrison

2016). Empirically examining the effects of ice micro-

physics on buoyancy in various convective environ-

ments of the tropics is thus of interest for future work.

The discussion of caveats above points to some in-

teresting aspects in which representation of deep convec-

tion over tropical land can be expected to be more

sensitive than over the ocean. The additional involvement

of the boundary layer is no surprise. However, the de-

pendence of the deep convective instability through the

upper troposphere on contributions to buoyancy from the

freezing process over land, even under highly favorable

conditions (sufficient free-tropospheric water vapor and

at a favorable time of day), points to a potentially greater

sensitivity to freezingmicrophysics than over ocean. These

sensitivities will be addressed in future work. Nonetheless,

the overall results for the leading order effects of lower-

free-tropospheric water vapor on convection in the Am-

azon have striking parallels to the oceanic case.

8. Conclusions

This study compares and contrasts the relationship

between CWV and deep convection in the Amazon to

that in the tropical western Pacific using measurements

from two neighboring sites at each location: specifically,

results from the GOAmazon site in Manacapuru, Brazil,

and the GNSS site at INPA in Manaus, Brazil, are com-

pared to results from the DOE ARM sites at Nauru and

Manus Island. The relationships evident at all locations

are robust, with an increase in conditionally averaged rain

rate as a function of CWV. The probability of pre-

cipitation often increases beyond 50% in the highest

CWV bins. The distribution of CWV is consistent with

the distributions observed in microwave retrievals over

ocean (Neelin et al. 2009) for both precipitating points

and all points, with the distribution for precipitating

points peaking just below the critical value at which

precipitation increases sharply and decreasing rapidly

over the pickup region. All cases with sufficient data

counts are consistent with a longer-than-Gaussian tail

extending out to high CWV. Much of the variability in

columnmoisture is due to variability in free-tropospheric

humidity, suggesting that the onset of deep convection is

strongly dependent on free-tropospheric humidity at

tropical land sites, much like over tropical ocean sites.

The relationship between CWV and precipitation is

generally robust across time of day. While there is a

smaller fraction of precipitating points of a given CWV in

nighttime hours compared with those occurring near

midday, the conditionally averaged precipitation exhibits a

very comparable pickup that increases beyond a threshold

value of CWV. Thus, while the probability of nighttime

precipitation likely depends on boundary layer factors,

CWV remains an important proxy for the effects of lower-

free-tropospheric water vapor on deep convection.

Because convection occurs at small time and space

scales, spatial and temporal averaging can degrade the

statistics describing the transition to deep convection. In

daily averages, a highly smoothed version of the behavior

may still be seen, but much information about the un-

derlying physics—particularly the sharp onset of condi-

tional instability associated with deep convection—is

largely lost. Daily averages are thus suboptimal for ex-

amining this behavior over both land and ocean, and their

use for such an analysis is not recommended. Examining

these statistics at various averaging intervals closer to the

appropriate time scales for convection indicates that the

pickup curves are robust over averages from15min to 3h.

One-hour averages yield results very similar to 15-min

averages, while 3-h averages slightly reduce the sharpness

of the pickup. Similarly, using satellite retrievals of pre-

cipitation for a region surrounding theGOAmazon site at

different spatial resolution yields convective transition

statistics that reasonably reflect the in situ observations at

0.258 resolution, but the sharpness of the pickup of pre-

cipitation becomes smoothed as the domain of the spatial

averaging increases.

Examining the temporal and vertical structure, lower-

tropospheric moisture increases prior to convection and

precipitation at the GOAmazon site. This is consistent

with findings for the tropical western Pacific ARM sites

(Holloway and Neelin 2009). However, for the land case

the lower-tropospheric moisture is more variable in

time and there are clear indications that moisture has

been lofted following the convection, whether by the

detrainment of water at various levels during the con-

vective event or by heating and stratiform processes.
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After convection, the subcloud layer becomes cooler and

slightly drier over both land and ocean. The before and

after moisture profiles in this tropical land case thus il-

lustrate the two-way interaction between convection and

water vapor, with increases in lower-tropospheric water

vapor prior to convection consistent with impacts on

buoyancy in entraining convection.

The latter impacts are tested by computing buoyancy

profiles with a previously used profile of turbulent en-

trainment, which are then conditionally averaged byCWV

to assess whether buoyancy through a deep convective

layer is comparable to the onset of precipitation as a

function of CWV. This is examined for soundings from all

times of day and for nighttime and midday ensembles of

profiles separately. For nighttime conditions, CIN may be

an additional control, although the CIN is considerably

smaller for the highest CWV values. The nighttime results

may point to the presence of preexisting disturbances or

boundary layer conditions not captured by CWV. The

midday soundings show buoyancies sufficient for shallow

convection over a middle range of CWV. However, only

the highest CWVbinswould be convective through a deep

layer for each case—nighttime, midday, and all times—

consistent with the pickup of precipitation. Some differ-

ences relative to the ocean are worth noting: there are

likely greater contributions from the boundary layer to the

conditional instability of the environment that cannot be

sufficiently explained by variability in CWV, and there is

evidence that freezing microphysics exerts greater influ-

ence on the development of buoyancy above the freezing

level. Nevertheless, the dependence of deep convective

onset on free-tropospheric humidity is robust and of

leading order over both tropical land and tropical ocean.
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APPENDIX

Comparison of CWV and Precipitation Datasets

To illustrate the consistency between radiometer CWV

and radiosonde CWV, Fig. A1 shows 15-min-average

radiometer CWV scattered against radiosonde CWV.

CWV is thus sampled every 6h within the period 10

January–30 September 2014. It is evident that there are

no systematic biases observed at high values of CWV,

which could have resulted from interpolation or mea-

surement inaccuracy.Overall, while our ability to confirm

consistency between instruments is limited to the sam-

pling of the radiosondes, it is evident from this sample

that the CWV values agree well across instruments.

Figure A2 shows the probability density functions

(PDFs) of the five precipitation datasets used through-

out this study: AOSMET at the GOAmazon site, ORG

at Nauru, ORG at Manus Island, TRMM, and the

dataset from INPA in Manaus, Brazil, coincident with

the GPS CWV measurements. It is evident that the

PDFs of the precipitation data from the GOAmazon

site, Nauru, andManus Island are all consistent with one

another, whereas the TRMM and INPA datasets are

biased low, with much lower probability of high rain

rates (Fig. A2a). This contributes to differences in the

magnitudes of the pickup curves between those seen in

Fig. 4 (TRMM) and Fig. 5 (INPA), in comparison with

Figs. 1 and 2. The TRMMdata in Fig. 4 require a unique

precipitation axis to those of Figs. 1 and 2, since these

data have a different spatial footprint than all others used

in this study. Figure 5, on the other hand, adopts an axis

that is scaled according to the ratio of 30-min-mean INPA

data and 30-min-mean radiometer data. This value

(4.68mmh21) is divided by the range used in Fig. 1d

(6mmh21) to instead yield a range of 1.28mmh21 for the

axes in Fig. 5. It is also apparent that the PDFs of the

precipitation datasets at Nauru, Manus Island, and

the GOAmazon site all exhibit power-law behavior

(Fig. A2b) out to high precipitation (;40mmh21), after

FIG. A1. The relationship between radiometer CWV and ra-

diosonde CWV for 10 Jan–31 Jul 2014. The correlation coefficient

is 0.91.
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which point the distribution drops off exponentially. The

exponent of the power-law range is approximately21.25,

while the decay scale of the exponential range is roughly

26mmh21.

Figure A3 compares the available precipitation ob-

serving systems at the GOAmazon site by scattering the

15-min-average precipitation rates of each system against

the chosen dataset, AOSMET. Between 1 January and

15 October 2014, four instruments recorded precipitation:

an ORG, a present weather detector (PWD), a Vaisala

WXT520 from the AOSMET, and a Vaisala WXT520

from a system including a three-channel microwave

radiometer (MWR3C). Comparison to MWR3C pre-

cipitation is not included in this analysis, but the data

compare well with the AOSMET precipitation chosen

for use in this study (A. Theisen, ARM Climate Re-

search Facility Data Quality Office, 2016, personal

communication).

FIG. A2. (a) A PDF of 1-min-average precipitation for all five instruments used in this study. The means of

precipitating points (.0.1mmh21) are as follows: 7.7mmh21 at Nauru, 9.7mmh21 at the GOAmazon site,

8.7mmh21 at Manus Island, 2.5mmh21 at the INPA in Manaus, and 2.2mmh21 for the TRMM grid box (0.258 3
0.258) that includes the GOAmazon site. A reference line of slope20.017 is shown near the exponential part of the

curve (;40–100mmh21). (b) As in (a), but on log–log axes. A reference line corresponding to a power law with

slope 21.25 is shown for precipitation rates , 40mmh21.

FIG. A3. Scatterplots of the precipitation data available from various instruments at the GOAmazon site—

optical rain gauge (ORG), present weather detector (PWD), Parisvel laser disdrometer (PARS), and tipping-

bucket rain gauge (RAIN)—in comparison to the AOSMET instrument chosen for this analysis. Results shown are

for the time periods (a) prior to 15 Oct 2014 (ORG and PWD only) and (b) after 15 Oct 2014, as a limited selection

of reliable observations was available before 15 Oct 2014.
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Figure A3a shows the PWD and ORG datasets scat-

tered against the AOSMET dataset. Two main features

are worth noting: 1) the plateau of rain rates in the PWD

data (blue) and 2) the erroneous rainfall measured by

the ORG (green). The plateau of PWD rain rates in-

dicates that the instrument records a maximum value of

;8–10mmh21; this leads to the systematic recording of

erroneously low rain rates above an unknown threshold.

These data could be used to confirm the incidence of rain,

but analysis of the rain-rate magnitudes using these data

is not recommended. The ORG had many operational

problems throughout the specified time period and thus

often recorded precipitation when it was not raining, as is

evident from the scatter on the ordinate. Less evident are

all of the erroneous values at low rain rates recorded as a

result of instrument malfunction. Eliminating all points

less than 0.5mmh21 in the ORG data would likely

remedy some issues on the low end, but a thresholdwould

not likely help to eliminate erroneous data on the high

end. Therefore, these data must be extensively examined

and errors must be corrected for before using these data

prior to 15 October 2014 when the instrument was re-

paired (A. Theisen, ARM Climate Research Facility

Data Quality Office, 2016, personal communication).

After 15 October 2014, five instruments measured

precipitation at the GOAmazon site; all data besides

that from the MWR3C system are included in Fig. A3b.

It is evident that the ORG data are consistent with the

AOSMET precipitation after 15 October 2014, as are

the data from the Parisvel laser disdrometer (PARS)

and the tipping-bucket rain gauge (RAIN). Overall,

however, theAOSMETprecipitation dataset is themost

reliable for use throughout the entire GOAmazon

campaign, and is thus chosen for use in this analysis.

Prior to 15 October 2014, use of neither the PWD nor

the ORG precipitation datasets is recommended.

As previously noted in section 2, a value-added CWV

product from the MWRwas archived by the DOEARM

Data Archive in March 2016 and made available in June

2016 (R. Jundt, ARM Climate Research Facility, Pacific

Northwest National Laboratory, 2016, personal commu-

nication). This dataset, referred to as MWRRET, is re-

trieved using a physically basedmethodology that includes

more information about the atmospheric state in the

retrieval process, an optimal estimation in an iterative

scheme to retrieve CWV and liquid water path, and a ra-

diative transfer model (Turner et al. 2007).

Even after linearly interpolating over periods of 6 h or

less, the MWRRET contains 60% less data in compar-

ison to the MWR data, and the missing data are likely

biased toward periods with substantial precipitation.

The length of missing values over which the MWRRET

data are linearly interpolated is roughly 10%–50%

greater than for theMWRdata. In theMWRRETCWV

dataset, differences in the linear interpolation of CWV

values across wet-window periods (rainy times) tend to

shift many of the values previously belonging to high

CWV bins to lower CWV bins. The above contributes

significantly to the difference in the statistics.

Figure A4 shows a comparison of this dataset to the

analysis in Fig. 1. The results using MWRRET yield

identical locations of the precipitation and probability

pickups. However, the magnitude of the precipitation

and the probability of precipitating points in the last four

CWV bins (Figs. A2a and A2b) are reduced compared

with Figs. 1d and 1e. Additionally, the long tails of the

CWVdistributions for all points and precipitating points

at high CWV, seen in Fig. 1f, are less pronounced

(Fig. A2c) since the occurrence of high CWV is signifi-

cantly reduced. Overall, this comparison of the less-

filtered MWR retrieval in the body of the paper to the

more conservative MWRRET retrieval in Fig. A4 helps

to bound the sensitivity of the statistics to retrieval

choices. Regardless of the CWVdata retrieval algorithm

andmethod, the key features of the statistics observed in

Fig. 1 are robust.

FIG. A4. As in Figs. 1d–f, but with the MWRRET value-added product best-estimate CWV data following the methods of Turner

et al. (2007).
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In summary, although the qualitative convective tran-

sition statistics are robust across a broad set of instru-

mentation, careful consideration must be given to the

observing systems and various data retrieval methods for

quantitative aspects, as systematic biases and instrument

error could affect comparisons to model output.
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